

Illinois Migrant Council

PREPARING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS

a USDA NIFA BEGINNING FARMER AND RANCHER
DEVELOPMENT PROGRAM PROJECT
GRANT # 2012-49400-19565

http://www.newillinoisfarmers.org

GROWING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS

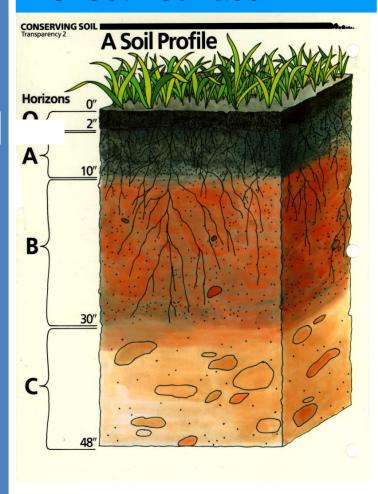
USDA NIFA Beginning Farmer and Rancher Development Program
Grant # 2012-49400-19565

INTRODUCTION TO SOILS

J. D. Kindhart & Ellen Philips March 2015

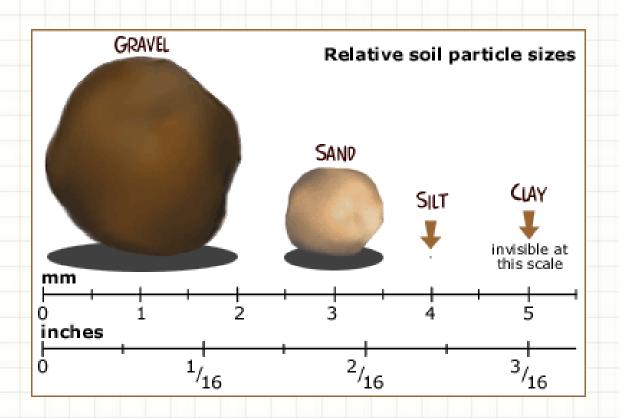
Soil

This definition is from Soil Taxonomy, second edition


 Soil is a natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or both of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or the ability to support rooted plants in a natural environment.

Ideal Soil Profile

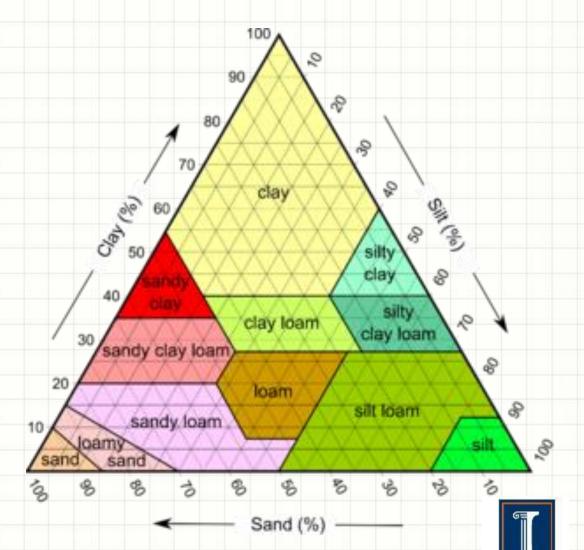
0 feet - surface

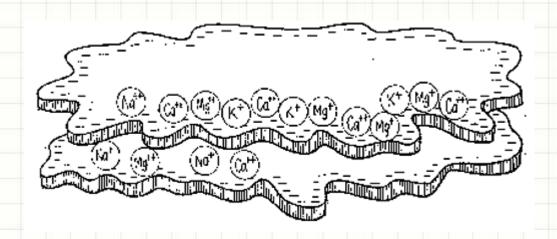


2 inches to 5+ feet

Soil Horizons

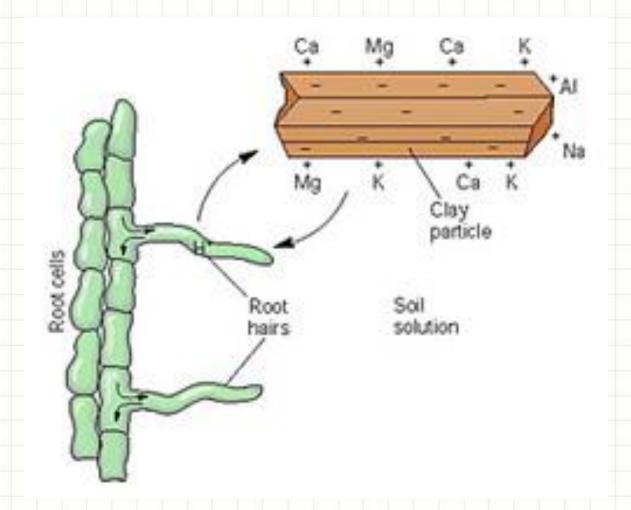
- (O horizon)
- A horizon
 - Topsoil
- (E horizon)
- B horizon
 - Subsoil
- C horizon
 - Substratum
 - Parent Material
 - Regolith
 - Bedrock




Soil Texture

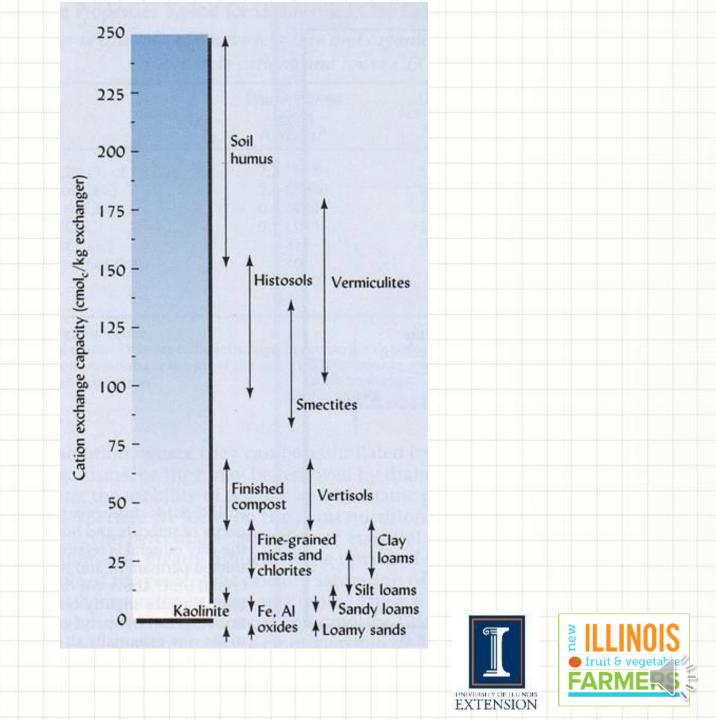
EXTENSION

Cation Exchange Capacity: CEC



16 Essential Nutrients

- Structural Nutrients
 - Carbon (C)
 - Oxygen (O)
 - Hydrogen (H)
- Major (macro) nutrients
 - Nitrogen (N)
 - Phosphorus (P)
 - Potassium (K)
- Secondary nutrients
 - Calcium (Ca)
 - Magnesium (Mg)
 - Sulfur (S)


- Micronutrients
 - Boron (B)
 - Chloride (CI)
 - Copper (Cu)
 - Iron (Fe)
 - Manganese (Mn)
 - Molybdenum (Mo)
 - Zinc(Zn)

Cation Exchange Capacity (CEC)

 The total number of exchangeable cations a soil can hold

- amount of its negative charge

Soil Texture

CEC Range

(meq/100 g soil)

organic soils clays

25-50

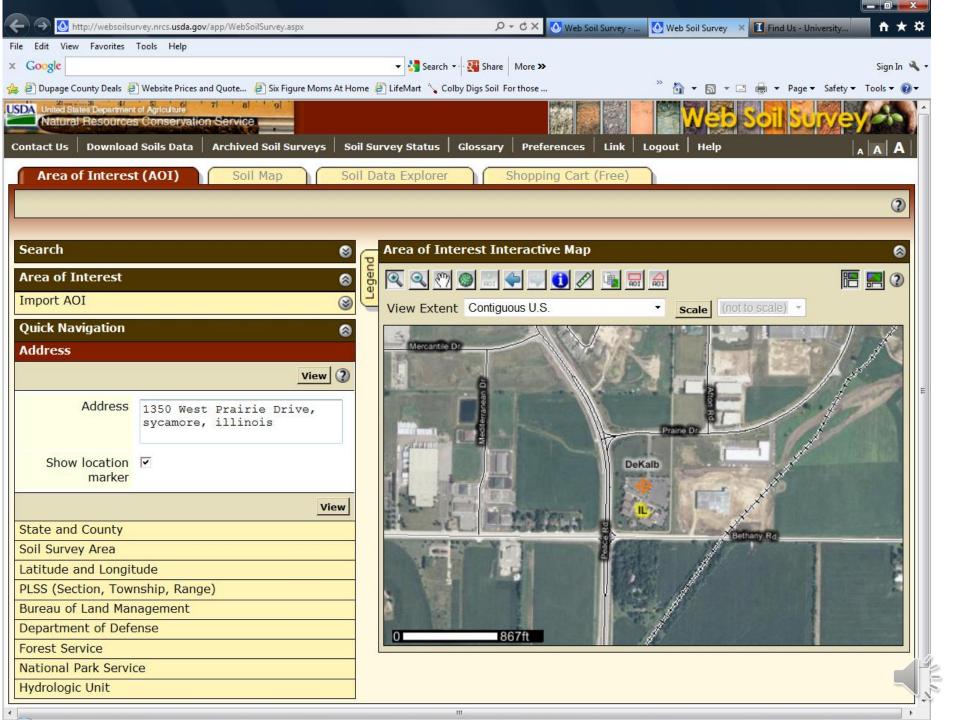
silts sands

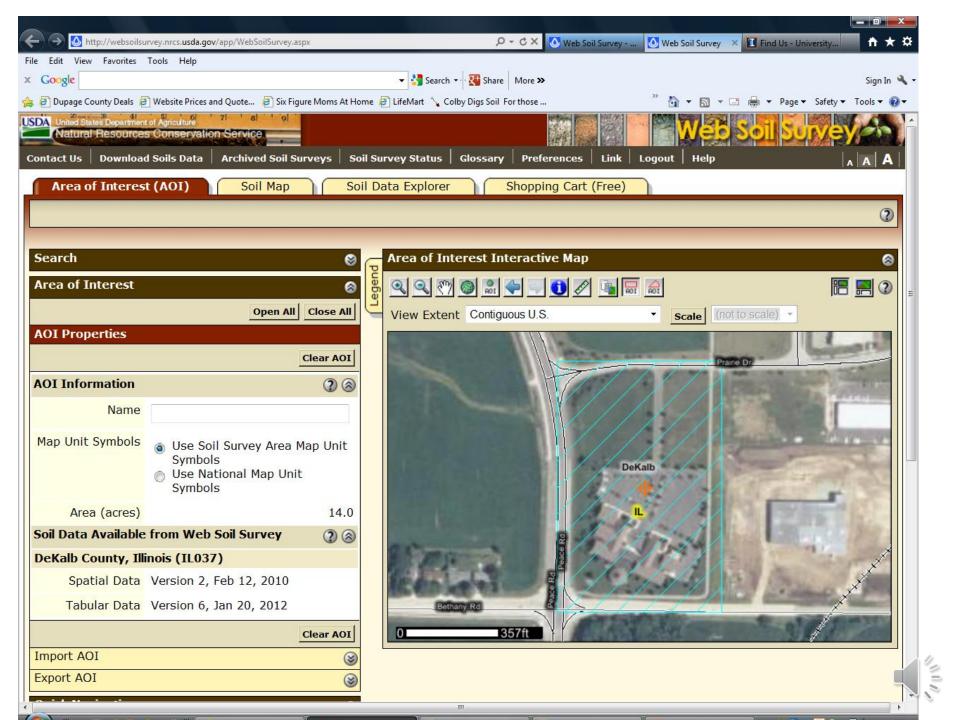
8-30

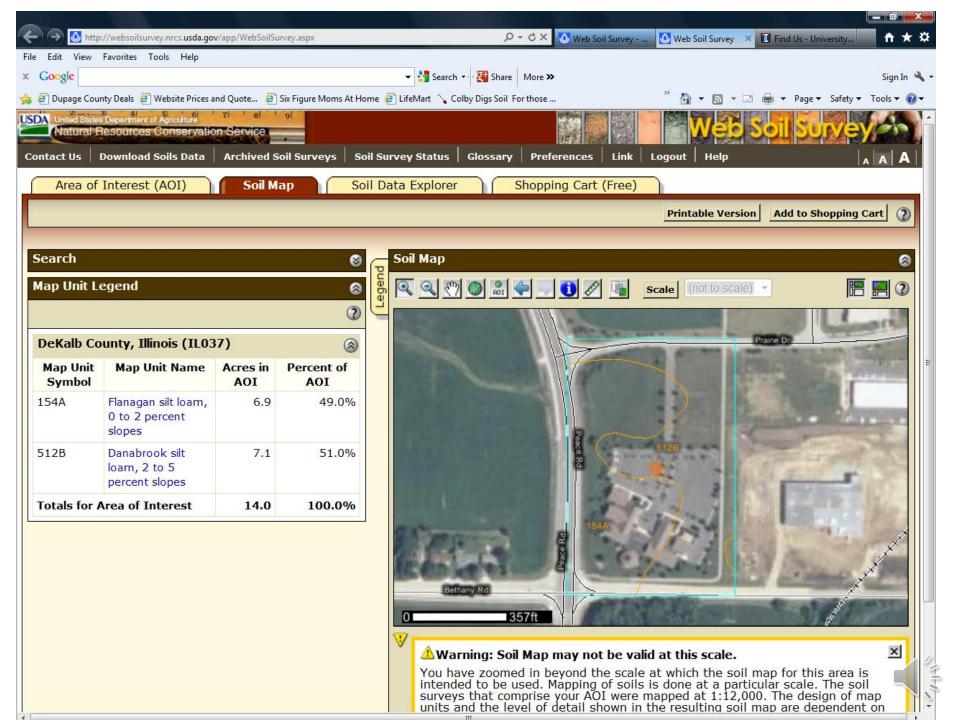
> 50

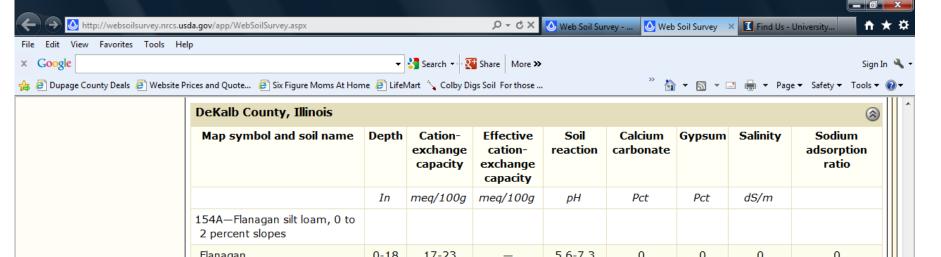
5-15

Figure 8.7. Cation-exchange capacity of Illinois soils. The darkest areas are sands with low capacity.






What Soil is on Your Property?



Flanagan 0 - 1817-23 5.6-7.3 0 0 0 0 0 18-38 26-31 5.6-7.3 0 0 0 38-45 19-26 5.6-7.3 0 0 0 0 0 0 45-49 15-21 6.1 - 7.80-10 0 49-60 8.5-21 7.4-8.4 15-40 0 0 0 512B—Danabrook silt loam, 2 to 5 percent slopes Danabrook 0 - 1316-23 5.6-7.3 0 0 0 0 13-33 19-28 5.1-7.3 0 0 0 0 33-50 11-18 5.6-7.8 0-20 0 0 0 50-60 0 0 0 7.9 - 117.4-8.4 15-40

Description — Chemical Soil Properties

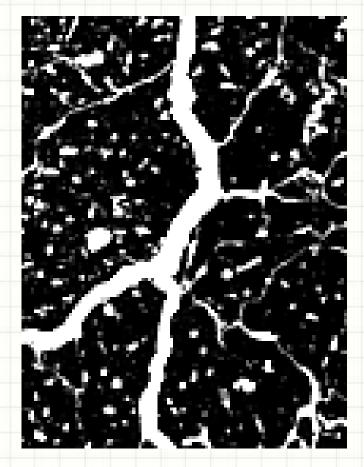
Chemical Soil Properties

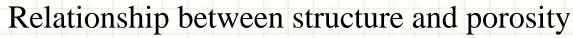
This table shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Cation-exchange capacity is the total amount of extractable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

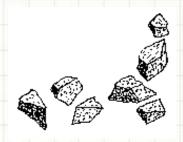
Effective cation-exchange capacity refers to the sum of extractable cations plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

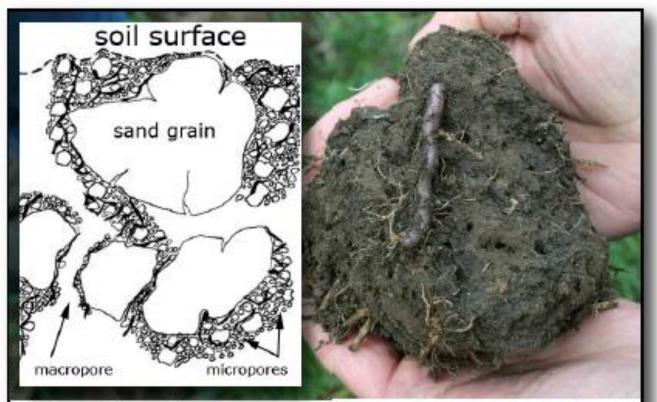




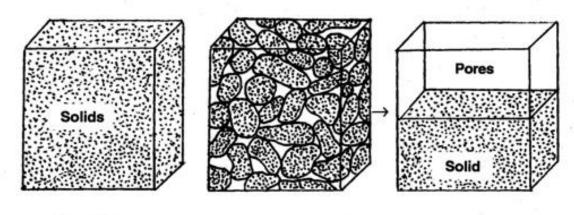
Some Factors Influenced by Soil Type

- Plant Selection: grow adapted varieties
- Irrigation: Soil types directly impacts plant available water
- Drainage
- Fertilizer recommendation
- Yield potential
- Herbicides: read label for special instructions


SOIL STRUCTURE


Granular structure

Blocky structure



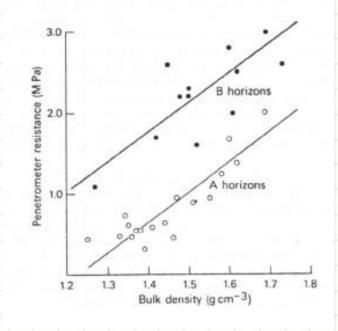
High residue and cover crops contribute organic matter to soil, while no-till management helps protect organic matter and allow accumulation. Organic matter provides food for earthworms and other soil biota. All play a role in developing or protecting soil structure and macropores to help soil function at a high level. Inset shows relationship of macro- and micropores to soil aggregates.

Bulk Density

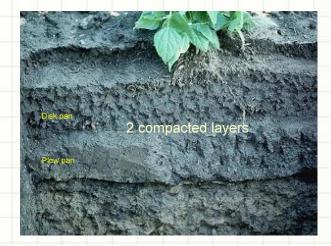
Particle Density

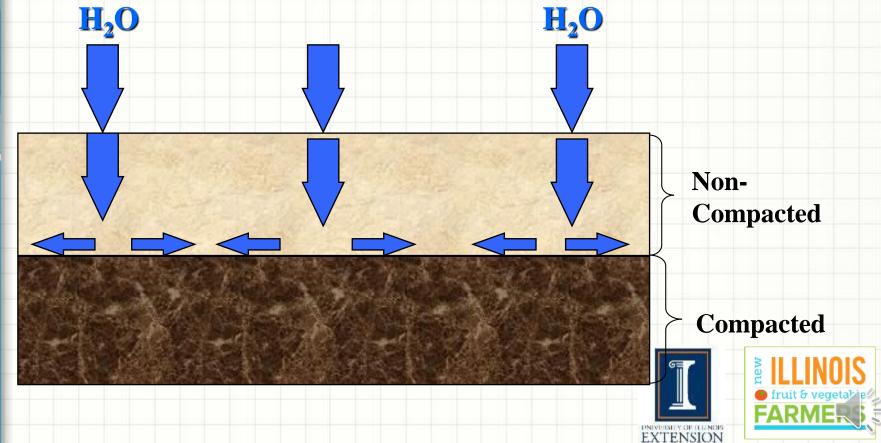
100% solid Weight = 2.66 g Volume = 1 cm³

Bulk Density


50% solid, 50% pore space Weight = 1.33 g Volume = 1 cm³

Penetrometer

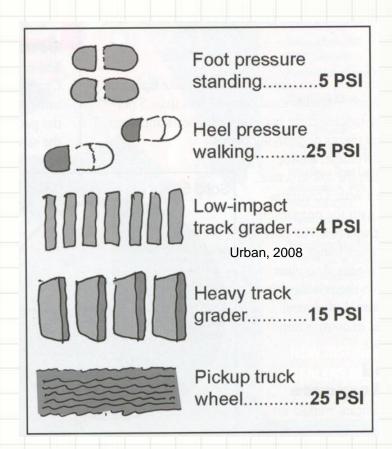




Compacted Zone

Impermeable Layer

Preventing and Repairing Compaction


- Break up compacted layer
 - Double digging
 - Sub soiling
 - Core aeration of lawns
- Plant deep rooted plants
 - Tillage radish
 - Annual Ryegrass

Preventing and Repairing Compaction

- Prevent further compaction
 - Minimize Tillage
 - Minimize Rototilling
 - Vary depth of tillage each year
 - Minimize walking on soil
 - Raised beds guide traffic
 - Do not drive cars or other vehicles across soil
 - Develop drive aisles

Interpreting Soil Test Results

REPORT NUMBER

REPORT DATE

ACCOUNT

PAGE 1/1

13611 "B" Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 www.midwestlabs.com

IDENTIFICATION

AGPRO SYSTEMS INC DON MISCHNICK/D KINSEY 242 PR 3341 BIG SANDY TX 75755-4658

SOIL ANALYSIS REPORT

						OPPOSITE OF	NEUTR	AL AMM	AUM AC	ETATE DIXCHANG	EARLE				TO SHEET:				
LAB	SAMPLE	ORGANIC	P	HOSPHORU	15	POTAS:	SIUM	MAGN	ESIUM	CALCIUM	SODIUM	TERRE	рН	CATION	PERCEN	IT BASE	SATURAT	ION (CO	MPUTED)
	IDENTIFICATION	MATTER MODIFIED LIGH percent RATE	DAKAK BRANS 1:2 ppm RATE	ESTRONS BRAYS	BICARBONATE P ppm BATE	K	RATE	ppm	RATE	Ca ppm RATE	Na ppm RATE	SOL pH	BUFFER	CAPACITY C.E.C.	· K	Mg Mg	Ca	, A	% Na
48 93	la ·	1	12/8	2		3		80	4	980 4	5	6	7	8	13.5	10.3		34.0	19.00
				- 13					STATE OF			-			_		9		-

LAB	77 (7)	EDV/UN		NI	TRATE-N		0.75	1110		mile	SULFUR	WHILE TO SERVICE COLUMN	MANGANESE	IRON Fe	COPPER	BORON	UME UME BATE	SALTS	7
NUMBER	1	SURFACE	10000	-	SUBSOIL	1000	2 300	SUBSOIL	2	Total	DEAP	DIPA	DEPA	DTPA	DIFA	8098, 0174	100	10	13
205	ppm	Bs/A	depth (in)	ppm	EwA	depth (in)	ppm	Bs/A	depth (Iri)	Total Rs/A	ppm SATE	ppm RATE	ppm RATE	pper RATE	ppm RATE	ppm RATE	34	em AATI	No.
			3-6								12	13	14	15	16	17	18	19	
	_		11	1						_			100						
	1		E S																
						0.00								10.0	100			15	
														10.0				23	L

BEV 1369

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

Our reports and letters are for the exclusive and confidential use of our blanks and may not be reproduced in whole or in part, nor may any reference be made

Soil Test Report

Soil Testing Laboratory 23 Mumford Hall, MU Columbia, MO 65211 Phone: (578) 882-0623 Soil Testing Laboratory P.O. Box 160 Portageville, MO 63873 Phone: (573) 379-5431

ory **D**

		FIELD	INFOR	MOTTAN	
Fleid ID	Hil.	I top f	ield	Sample	no. 1
Acres 4	0	Last Limed	Not	known	Irrigated No
Last crop	019	Cool-	Seaso	n Gras	s Pasture

This report is for:

Example Report University of Missouri Columbia, MO 65211

D					C	RATING										
B SOIL TEST	INF	OHMATION	1	Very low	L	ow	Mediur	n	High	Very High	Excess					
pH _s (salt	pH)	4.9		*****												
Phosphorus	(P)	22 1bs	s/acre	******	*************											
Potașsium	(K)		s/acre		****	*****	*****	*****	*							
Calcium	(Ca)	2091 1	bs/acr	e *******	*****************											
Magnesium	Mg)	278 1	bs/acr	e ******	********											
Suttur (SO	4.5)		p	pm												
Zine	(Zn)		P	pm												
Manganese	Ma)	į.	p	pm	151	107			4							
Iron	(Fe)		P	pm												
Copper	Cu)		P	pem	13.34.74.7	122	-11/2/08			William Sept. Mayor						
Organic metter		2.2 %	Neutraliz	able acidity	6.0	meq/1	00g Cat	ion Exch.	Capacity	12.8	moq/100g					
pH in water			Electrical	Conductivity		mmho	Vam Soc	fium (Na)			lbs/a					
Nitrate (NO ₃ -N) Topsoil		ppm	Subsoil	ppm	Samp	ing Depth	Top		Inches	Subsoil	inches					
			NUTRI	ENT REQUIREME	NTS				_	LIMESTO	NE					
			,			Poun	ds per ecr	9		SUGGESTIO						
Croppi	ng op	otions	Z.,,,,,,,,	Yield goal	N	P ₂ O ₅	K ₂ O	Zn	\$	1 0000000	,,,,,					
Alfalfa/Grass Establishment				0	20	55	0			Effective neutralizing	1 205					
Clover/Grass	lover/Grass Establishment					45	0			material (ENM)	1,395					
Alfalfa/Grass	6	0	80	235			Effective magnesium	٥								
Cool-Season C	ra	ss Past	ure	150 CD/A	90	30	20		233/20	(EMg)	A Comment					

1

To determine limestone needs in tons/acre, divide ENM requirements by the guarantee of your limestone dealer.

When N requirement for cool-season grass exceeds 90 lbs/acre, apply 2/3 of it during the eriod from December through February, and the remainder in August.

Do not use nitrogen on spring seedlings of legumes after May 1st because of potential weed competition.

Area Agronomy Specialist Agronomy Specialist

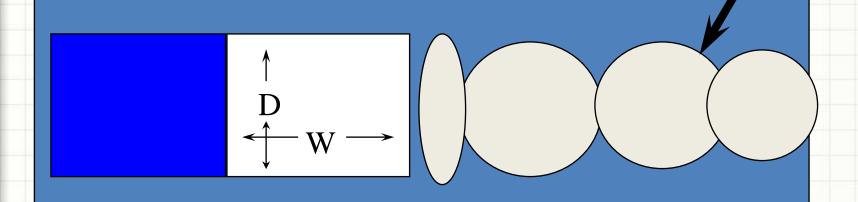
Phone (573) 882-1000

White-Farmer, Yellow-ASCS, Blue-Film, Pink-Extension

MP 189 Revised 1/96

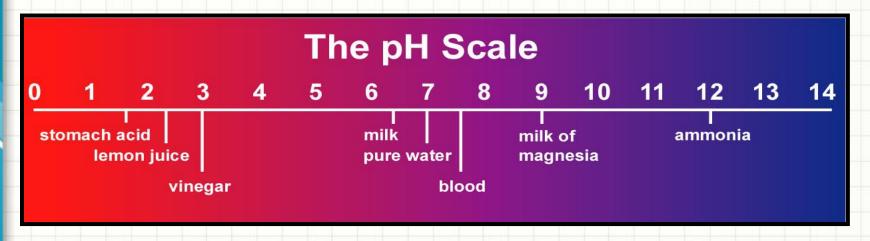
Signature

University of Missouri, Lincoln University, U.S. Department of Agriculture & Local University Extension Councils Cooperating equal opportunity institutions


Pounds/A = ppm x 2

Acre Furrow Slice

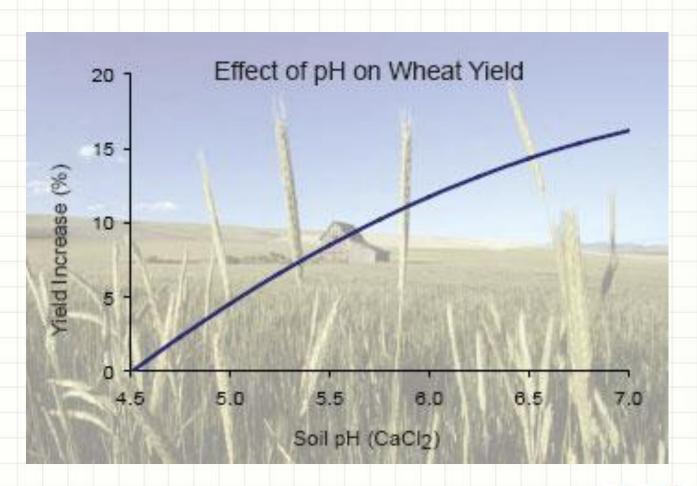
 $\overline{AFS} = D \times W = 2,000,000 \text{ pounds}$


Recommendations

Soil pH

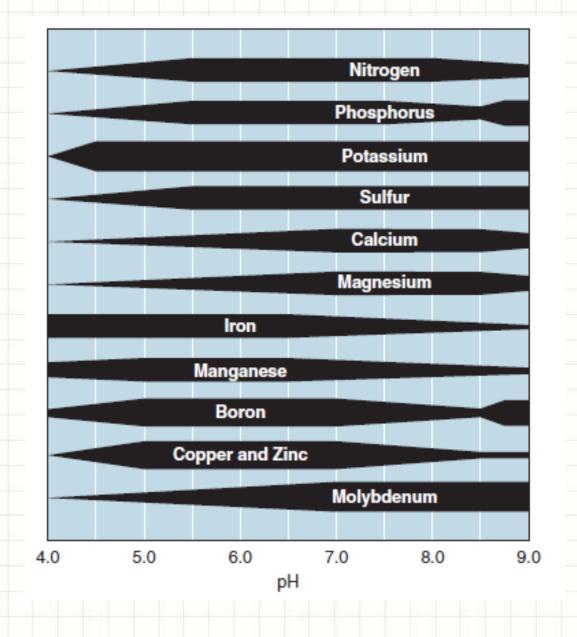
 Measure of alkalinity or acidity on a scale of 0 - 14

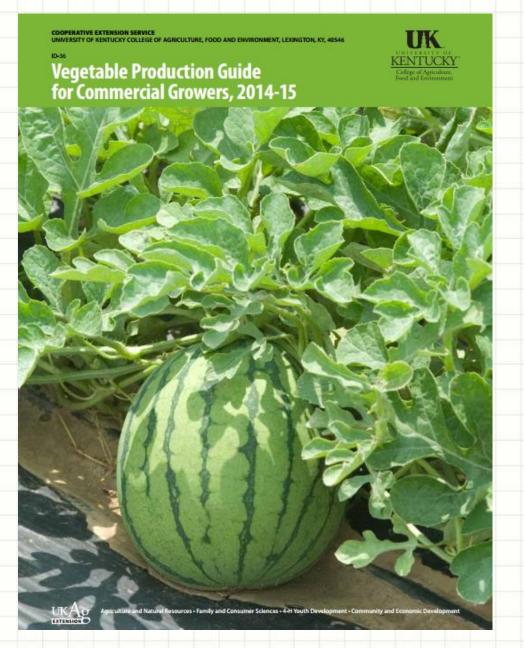
Acidic


Neutral

Alkaline

Adjusting pH




Table 8.3. Suggested limestone rates based on soil type, pH, cropping system, and 9-inch depth of tillage.

Soil											S	oil pH	value	,								
typea	4.5	4.6	4.7	4.8	4.9	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0	6.1	6.2	6.3	6.4	6.5	7.0
	Tons of typical limestone ^b to apply to grain farming systems																					
A	8.0	8.0	8.0	8.0	8.0	8.0	7.8	7.0	6.3	5.5	4.8	4.0	3.3	2.5	1.8	1.0				Opti	onal	
В	8.0	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0				Opti	onal	
C	6.6	6.3	5.9	5.5	5.1	4.8	4.4	4.0	3.6	3.3	2.9	2.5	2.1	1.8	1.4	1.0				Opti	onal	
D	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0				Opti	onal	
E	4.0	3.6	3.2	2.8	2.4	2.0																
					Tons o	of typi	cal lin	neston	e ^b to	appl	y to f	orage	farmi	ing sys	stems	(alfali	fa, clo	ver, le	esped	eza)		
A	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.3	9.6	8.9	8.1	7.4	6.7	6.0	5.3	4.6	3.9	3.1	2.4	1.7	1.0	Optional
В	11.0	11.0	11.0	10.4	9.9	9.3	8.8	8.2	7.7	7.1	6.6	6.0	5.4	4.9	4.3	3.8	3.2	2.7	2.1	1.6	1.0	Optional
C	10.0	9.6	9.1	8.7	8.2	7.8	7.3	6.9	6.4	6.0	5.5	5.1	4.6	4.2	3.7	3.3	2.8	2.4	1.9	1.5	1.0	Optional
D	6.0	5.8	5.5	5.3	5.0	4.8	4.5	4.3	4.0	3.8	3.5	3.3	3.0	2.8	2.5	2.3	2.0	1.8	1.5	1.3	1.0	Optional
E	6.0	5.4	4.9	4.3	3.8	3.2	2.7	2.1	1.6	1.0			-	-	-				-	-		

Note: If plowing is less than 9 in., reduce the amount; if it is more than 9 in., increase it. A chisel plow, disk, or field cultivator rather than a mold-board plow may not mix limestone deeper than 4 to 5 in.; for no-till or pasture systems, use the equivalent of a 3-in. tillage depth (one-third of the amount suggested).

^aSoil A: Dark-colored silty clays and silty clay loams (CEC > 24). Soil B: Light- and medium-colored silty clays and silty clay loams; dark-colored silt and clay loams (CEC 15–24). Soil C: Light- and medium-colored silt and clay loams; dark- and medium-colored loams; dark-colored sandy loams (CEC 8–15). Soil D: Light-colored loams; light- and medium-colored sandy loams; sands (CEC < 8). Soil E: Muck and peat. Soil color is usually related to organic matter. Light-colored soils <2.5% organic matter; medium-colored soils 2.5–4.5% organic matter; dark-colored soils >4.5% organic matter.

bTypical limestone: 10% of the particles are greater than 8-mesh; 30% pass an 8-mesh and are held on 30-mesh; 30% pass a 30-mesh and are held on 60-mesh; and 30% pass a 60-mesh. A calcium carbonate equivalent (total neutralizing power) of 90%. Effective neutralizing value (ENV) of this material is 46.35 for 1 year after application, and 67.5 for 4 years after application. To correct the rate of application based on the ENV of the material available, follow calculations in the worksheet on page 98.

http://www2.ca.uky.edu/agc/pubs/id/id36/id36.pdf

EXTENSION

FERTILIZER: Tomatoes

The following fertilizer rates are to be used only as guidelines. Research at the University of Kentucky and at the University of Tennessee indicates that there is no yield increase from using more than 60 lb/A K₂O or 60 lb/A of P₂O₅ when soil test P and K levels are high.

Soil Test R	esults (lb/A)	Fertilizer Needed (lb/A)
Phosphore	us	Phosphate (P ₂ O ₅)
Low	<31	181-240
Medium	31-60	61-180
High	61-80	1-60
Very High	>80	0
Potassium	1	Potash (K ₂ O)
Low	<201	121-250
Medium	201-300	61-120
High	301-450	1-60
Very High	>450	0
Basal nitro tomatoes:	ogen where	N
1. follow gr or legume	rass-legume sod	30
2. follow gr	rass sod	50
	n on continu-	60

Supplemental applications: On bare ground plantings, apply an additional 30 lb of nitrogen/A as a sidedressing when the first fruits are golf-ball size. A second sidedress application of 30 lb N may also be desirable two or three weeks later, depending on the crop's growing condition. For plasticulture with drip on medium-textured soils, apply all recommended phosphorus and potassium requirements prior to laying plastic mulch. See fertigation table for N application rates.

FERTIGATION RECOMMENDATIONS (Nitrogen only): Staked Tomatoes

Based on a total season N recommendation of 150 lb actual N/A with 50 lb N/A applied preplant and the remaining N (150 - 50 = 100 lb) divided into equal amounts to be fertigated on a weekly basis (100 lb \div 10 weeks = 10 lb of N per week). Both moderate (75 lb) and high (100 lb) fertigated N rates are provided below. For harvest seasons extending beyond 10 weeks from transplanting, a maintenance dose of 1 to 1.5 lb N (3 to 4.5 lb ammonium nitrate) per week is adequate. The doses listed for 1,000 plants are based on a plant population of 4,200 plants/A (i.e., rows on 6 ft centers in 5-row blocks and plants 18 in apart). IMPORTANT: If a UK soil test indicates your site is "at risk" for ripening disorders (Hartz ratio), you should alternate fertigations using ammonium or calcium nitrate with potassium nitrate fertigations (see Potassium Fertigation table).

Total Fertigated N Requirement ¹	Actual N/wk (lb/A)	Ammonium Nitrate (lb/A/wk)	Ammonium Nitrate (lb/1,000 plants/wk)	Calcium Nitrate (lb/A/wk)	Calcium Nitrate (lb/1,000 plants/wk)
75 lb/A	7 lb 8 oz	22 lb 6 oz	5 lb 5 oz	48 lb 6 oz	11 lb 8 oz
100 lb/A	10 lb	30 lb	7 lb	64 lb 8 oz	15 lb 6 oz

Fertigation can begin 10 to 14 days after transplanting and assumes 50 lb N/A was applied preplant and starter fertilizer was used.

FERTIGATION RECOMMENDATIONS (Nitrogen + Potassium): Staked Tomatoes

Potassium nitrate supplies both nitrogen and potassium and can be used as a substitute for ammo-

nium or calcium nitrate. It is especially important to fertigate with a potassium source if a UK soil test indicates that your site is "at risk" for ripening disorders (Hartz ratio).

Recommendations below are based on a total of 125 to 150 lb N/A for the season with 50 lb N/A applied preplant. The remaining (125-50) = 75 or (150-50) = 100 lb divided into equal amounts to be fertigated on a weekly basis for 10 weeks. This is either 7.5 or 10 lb of N/A/week. Both moderate (75 lb) and high (100 lb) fertigated N rates are given below. For harvest seasons extending beyond 10 weeks from transplanting, a maintenance dose of 1 to 1.5 lb N (11.5 lb potassium nitrate) per week is adequate. The doses listed for 1,000 plants are based on a plant population of 4,200 plants/A (i.e., rows 6 ft on center in 5-row blocks and plants 18 inches apart).

Total Fertigated N Requirement	Actual N/wk (lb/A)	Potassium Nitrate (lb/A/week)	Potassium Nitrate (lb/1,000 plants/wk)	K provided	Potassium Nitrate: K provided (lb/1,000 plants/wk)
75 lb/A	7 lb 8 oz	57 lb 11 oz	13 lb 12 oz	25 lb 6 oz	6 lb 1 oz
100/lb/A	10 lb	76 lb 15 oz	18 lb 5 oz	33 lb 14 oz	8 lb 1 oz

Problems more commonly found in specialty crops

- Phosphorus scores too high
- Advising on foliar feeding
- Nutrients out of balance?
- "Disease" associated with fertility

Other differences

- Fertilizer materials used
- Timing of application
- Method of application
- Fertilizer input expenses are normally not that significant in the overall cost of production
- Excess fertilizer may result in problems beyond the simple waste of money

Tools in addition to soil testing utilized by Illinois specialty crop producers

- Tissue analysis
- Petiole sap meters
- Visual inspection

To reach us

Contacts	Contact information
Jeff Kindhart	jkindhar@illinois.edu
Rick Weinzierl	weinzier@illinois.edu

If you have questions ...

- University of Illinois Extension Local Food Systems and Small Farms team
 - http://web.extension.illinois.edu/smallfarm/
- USDA's Start2Farm site
 - http://www.start2farm.gov/

